CHROM. 11,269

Note

Paper chromatographic and electrophoretic separations of orotic acid, 5-fluoroorotic acid, 5-fluorouracil, and 5-fluorouridine 5'-monophosphate

RICHARD B. SILVERMAN and LEILANI V. KAPILI Department of Chemistry, Northwestern University, Evanston, Ill. 60201 (U.S.A.) (Received May 19th, 1978)

Numerous fluoropyrimidines have been found to have antitumor activity¹. For our enzymatic studies with the antitumor agent 5-fluoroorotic acid, we needed to separate orotic acid from 5-fluoroorotic acid and to separate 5-fluoroorotic acid, 5-fluorouracil, and 5-fluorouridine 5'-monophosphate. To our knowledge, these separations have not been reported. Separations of fluoroouracil and its nucleosides and nucleotides, however, have been reported²⁻⁵ as well as separations of these compounds from orotic acid and its nucleoside and nucleotide⁶⁻⁸.

We report here our descending paper chromatographic and electrophoretic systems used to carry out these separations.

EXPERIMENTAL

5-Fluorouracil and orotic acid monohydrate were purchased from Sigma (St. Louis, Mo., U.S.A.), and 5-fluoroorotic acid was bought from P-L Biochemicals (Milwaukee, Wisc., U.S.A.). 5-Fluorouridine 5'-monophosphate was synthesized by the procedure of Robins *et al.*⁹. The synthesis of [carboxyl-¹⁴C]5-fluoroorotic acid will be reported elsewhere¹⁰. Whatman 3MM paper was used for all separations.

Chromatography

The compounds (0.05–0.1 μ mole each) were separed by descending chromatography using freshly prepared solvent systems and eluting at room temperature for 16 h: (A) isopropanol-conc. ammonia-water (7:1:2), or (B) 0.5 mM Na₃B₄O₇isopropanol (1:2). The spots were visualized by UV light (254 nm). With [carboxyl-¹⁴C]5-fluoroorotic acid, radioactivity was determined by cutting out 1-cm strips from the origin to the solvent front and counting each strip in 10 ml Aquasol (New England Nuclear, Boston, Mass., U.S.A.) on a Packard Tri-Carb Model 3380 liquid scintillation counter.

Electrophoresis

Electrophoresis was carried out on a Savant flat-plate high-voltage instrument at 1,000 V for 60 min in 0.1 *M* HCl-KCl buffer (pH 1.8). Spots were visualized with UV light (254 nm).

RESULTS AND DISCUSSION

The R_F values for chromatography of the pyrimidines are listed in Table I.

TABLE I

R_F VALUES FOR CHROMATOGRAPHY OF PYRIMIDINES

Compound	Solvent system	R _F
Orotic acid	A	0.34
5-Fluoroorotic acid	Α	0.28
5-Fluoroorotic acid	В	0.39
5-Fluorouracil	В	0.64
5-Fluorouridine 5'-monophosphate	В	0.18

Each of the compounds separated in solvent system B was eluted from the paper with water and shown to have the same UV absorption spectrum of the , single component under identical conditions.

When the separation of 5-fluoroorotic acid and orotic acid was performed with [carboxyl-¹⁴C]5-fluoroorotic acid, essentially none of theradioactivity was found in the region of orotic acid¹⁰.

Electrophoretic mobilities for orotic acid and 5-fluoroorotic acid are 4.1 cm and 5.9 cm from the origin towards the anode.

ACKNOWLEDGEMENTS

This research was supported by grants from the National Cancer Institute, DHEW (CA 21156), and from the Research Corporation.

REFERENCES

1 C. Heidelberger, Handb. Exp. Pharmakol., 38 (1975) 193.

- 2 J. L. Dahl, J. L. Way and R. R. Parks, Jr., J. Biol. Chem., 234 (1959) 2998.
- 3 D. C. Remy, A. V. Sunthankar and C. Heidelberger, J. Org. Chem., 27 (1962) 2491.
- 4 G. Kaldor and C. Heidelberger, Biochem. Biophys. Acta, 36 (1959) 249.
- 5 D. G. Parsons and C. Heidelberger, J. Med. Chem., 9 (1966) 159.
- 6 C. Wasternack and H. Reinbothe, J. Chromatogr., 48 (1970) 555.
- 7 W. S. Adams and M. Nakatani, J. Chromatogr., 37 (1968) 343.
- 8 K. Fink and W. S. Adams, J. Chromatogr., 22 (1966) 118.
- 9 M. J. Robins, G. Ramani and M. MacCoss, Can. J. Chem., 9 (1975) 1302.
- 10 R. B. Silverman and L. V. Kapili, J. Label. Compouds Radiopharm., in press.